Lusternik–Schnirelmann category for simplicial complexes
نویسندگان
چکیده
منابع مشابه
New methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملGAP toolbox for simplicial complexes
simpcomp is a GAP package for working with simplicial complexes. It allows the computation of many properties of simplicial complexes (such as the f -, gand h-vectors, the face lattice, the automorphism group, (co-)homology with explicit basis computation, intersection form, etc.) and provides the user with functions to compute new complexes from old (simplex links and stars, connected sums, ca...
متن کاملDuality theorems for simplicial complexes
This thesis deals with the homology and cohomology groups of simplicial complexes, and especially with the two duality theorems which willdemonstrate links between the two notions. For this we will need some results, and we will therefore prove the long exact sequence for the reduced relative homology group; and to link the homology and cohomolgy to our geometric notion of a simplicial complex ...
متن کاملA Simplicial Description of the Homotopy Category of Simplicial Groupoids
In this paper we use Quillen’s model structure given by Dwyer-Kan for the category of simplicial groupoids (with discrete object of objects) to describe in this category, in the simplicial language, the fundamental homotopy theoretical constructions of path and cylinder objects. We then characterize the associated left and right homotopy relations in terms of simplicial identities and give a si...
متن کاملSaturated simplicial complexes
Among shellable complexes a certain class has maximal modular homology, and these are the so-called saturated complexes. We extend the notion of saturation to arbitrary pure complexes and give a survey of their properties. It is shown that saturated complexes can be characterized via the p -rank of incidence matrices and via the structure of links. We show that rank-selected subcomplexes of sat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2013
ISSN: 0019-2082
DOI: 10.1215/ijm/1415023508